Simulation of three-dimensional transient heat conduction problem with variable coefficients based on the improved parallel smoothed particle hydrodynamics method

Author:

Jiang Tao ,Chen Zhen-Chao ,Ren Jin-Lian ,Li Gang ,

Abstract

In this work, an improved parallel SPH method is proposed to accurately solve the three-dimensional (3D) transient heat conduction equation with variable coefficients. The improvements are described as follows. Firstly, the first-order symmetric smoothed particle hydrodynamics (SPH) method is extended to the simulating of the 3D problem based on Taylor expansion. Secondly, the concept of stabilized up-wind technique is introduced into the convection term. Thirdly, the MPI parallel technique based on the neighboring particle mark method is introduced into the above improved SPH method, and named the corrected parallel SPH method for 3D problems (CPSPH-3D). Subsequently, the accuracy, convergence and the computational efficiency of the proposed CPSPH-3D method are tested by simulating the 3D transient heat conduction problems with constant/variable coefficient, and compared with the analytical solution. Meanwhile, the capacity of the proposed CPSPH-3D for solving the 3D heat conduction problems with the Dirichlet and Newmann boundaries is illustrated, in which the change of temperature with time under the complex cylindrical area is also considered. The numerical results show that:1) the proposed CPSPH-3D method has the better stability, higher accuracy and computational efficiency than the conventional SPH method no matter whether the particle distribution is uniform; 2) the calculating time can be well reduced by increasing the number of CPUs when the particle number is refined in the simulations of CPSPH-3D. Finally, the temperature variation in the 3D functionally gradient material is predicted by the corrected parallel SPH method, and compared with the other numerical results. The process of temperature variation in the functionally gradient material can be shown accurately.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3