Investigation on Te-based chalcogenide glasses for far-infrared fiber

Author:

Wu Bo ,Zhao Zhe-Ming ,Wang Xun-Si ,Jang Ling ,Mi Nan ,Pan Zhang-Hao ,Zhang Pei-Qing ,Liu Zi-Jun ,Nie Qiu-Hua ,Dai Shi-Xun , , , ,

Abstract

When infrared (IR) is over 12 m, conventional chalcogenide (ChG) fibers are confused by the multiphonon absorption of Se, and novel glass materials for far-IR have become one of hot research points in recent years. Here, a novel ChG glass and fiber for far-IR without containing Se/As is well investigated. The glasses GeTe-AgI are purified by distillation and synthesized by melt-quenching method. The thermal properties and the infrared transmissions are reported. The step-index fiber, fabricated via a novel extrusion method, exhibits excellent transmission at 8-15 m: 24 dB/m in a range of 8-15 m and 15.6 dB/m at 10.6 m. The influences of oxygen contaminant and the purity of AgI on the glass transmission and fiber attenuation are discussed. Structural and physical properties of GeTe-AgI glass system are studied with differential scanning calorimetry and ellipsometer instrument. Optical spectra of GeTe-AgI glass system are obtained by spectrophotometer and infrared spectrometer. Main purification process with oxygen-getters (magnesium) is disclosed. The fiber attenuation is measured by the cut-back method with a Fourier transform infrared spectrometer. The lowest loss of this fiber can be reduced to 15.6 dB/m at 10.6 m. The results show that these glasses are well transparent in a wide IR window from 1.7 to 25 m, and these glass fibers can transmit light up to 15 m, thus the GeTe-AgI glass system is one of good candidates for far-IR. The fiber attenuation can be reduced effectively by the reasonable purification and novel extruded-processing. These environment friendly fibers are suited for far-IR applications, such as greenhouse gas sensing and the power delivery of CO2 laser.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3