Critical phenomena in amorphous materials

Author:

Ren Jing-Li ,Yu Li-Ping ,Zhang Li-Ying ,

Abstract

Amorphous material usually exhibit a complex atomic structure including short-range order, long-range disorder and metastable state in thermodynamic, which is one of the existing states of matters. Amorphous alloy, also named metallic glass, is a new metallic material, and has a high strength, a good electromagnetic property, an excellent corrosionresistant and a high elasticity. The system of amorphous alloy can show some critical states and is a complicated system. In recent years, much atttentions have been paid to the researches of the phase transitions and critical phenomena of amorphous material. On a microscale, amorphous alloy can be regarded as a solid composed of many-particle systems. The investigation of the critical phenomena can significantly enhance the understanding of the interactions among these multi-particle systems. The structure of amorphous alloy is randomly and isotropic in macro performance, and ordered and anisotropic on a localized nanometer scale. The characteristics on different scales of amorphous alloy are not isolated. The structure of amorphous alloy determines the performance. The preparation process determines the nature of the microstructure. The microstructure is the internal cause dominating glass transition and deformation. Moreover, the effective cooling rate in preparation process of amorphous alloy affects the short-range rate of the amorphous phase. The nonperiodic short-range order plays a key role in the stability of amorphous phase. Furthermore, the glass transition and deformation of amorphous alloys are the responses to the external energy. The characteristics of the deformation process change with external condition. The external force can lead to the localized shear deformation and transformation between amorphous and liquid in the shear band. High temperature can cause a wide range of transformation from the amorphous solid to the liquid. So it is worth understanding in depth the basic principles of liquid and glass transition in order to prepare amorphous alloy in undercooled liquids. In this review article, we discuss the critical phenomena of amorphous alloys, which include the preparation process, the microstructure, the mechanical property and the electromagnetism. The correlation and the influence of microstructure on the macroscopic properties are analyzed. It will be helpful for understanding the nature of amorphous alloy, improving service reliability and exploring amorphous alloys with application values.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference94 articles.

1. Wang W H 2013 Acta Phys. Sin. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

2. Yang W M, Liu H S, Zhao Y C, Inoue A, Jiang K M, Huo J T, Ling H B, Li Q, Shen B L 2014 Sci. Rep. 4 6233

3. Yu L, Hao B L 1984 Introduction to Phase Transitions and Critical Phenomena (Beijing: Science Press) p2 (in Chinese) [于渌, 郝柏林 1984 相变和临界现象 (北京: 科学出版社) 第 2 页]

4. Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. 31 1136

5. Chen H S, Turnbull D 1969 Acta Metall. 17 1021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3