All-fiber radio frequency-modulated pulsed laser based on frequency-shift feedback loop

Author:

Yang Hong-Zhi ,Zhao Chang-Ming ,Zhang Hai-Yang ,Yang Su-Hui ,Li Chen ,

Abstract

Lidar-radar by using an radio frequency modulated (RF-modulated) laser transmitter is a powerful technique for applications involving remote sensing. The method is based on the use of an optically carried RF signal in order to acquire the merits of both the directivity of the optical beam (lidar) and the accuracy of RF signal processing (radar). Compared with single-frequency coherent lidars, lidar-radars are less sensitive to atmospheric turbulence and the speckle noise induced by target roughness. For long range detection, pulsed operation is usually required because of the high peak power. In order to meet the requirement for long range detection, an RF-modulated pulse train based on an all-fiber frequency shifted feedback loop is proposed in this paper. A continuous-wave single-frequency fiber laser (seed laser) is coupled into a fiber link and an acousto-optic chopper is used as a frequency shifter and beam chopper. A Yb3+-doped fiber amplifier is used to compensate for the loss of the signal in the fiber loop. The pulse duration is determined by the open time of acousto-optic chopper, which is fixed at 110 ns. A square wave generated by an arbitrary waveform generator is used as a trigger signal of the acousto-optic chopper. The RF within the pulse results from the interference of frequency shifed pulse with the seed laser. By inserting a 10 km fiber in the loop and accurately controlling the trigger cycle of the acousto-optic chopper equal to the roundtrip time of the loop, the pulse train generated by acousto-optic chopper can circulate in the loop, leading to the generation of RF-modulated pulse with about 20 kHz repetition rate and 110 ns width. The gain provided by fiber amplifier in the loop partially compensates for the loss. By adjusting the gain of fiber amplifier, the modulation depth of RF within the pulse can be continuously adjusted and the maximum modulation depth is 0.67. We also present an time-delayed scalar interference model which includes the loop length, trigger cycle, frequency-shift, and the gain. According to the theoretical model, the RF-modulated pulse affected by trigger cycle and fiber amplifier is numerically simulated. The experimental results accord well with theoritical predictions. The RF-modulated pulse has the advantage of high pulse-to-pulse coherence, which provides potential applications in lidar-radar detection. Besides, with an additional frequency doubling stage one can obtain a source for underwater detections and communications. Extension of the scheme to the 1.5 μm telecommunication window is straightforwardfor various radio-over-fiber applications.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference18 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3