Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs

Author:

Deng Hong-Mei ,Huang Lei ,Li Jing ,Lu Ye ,Li Chuan-Qi ,

Abstract

Surface plasmon polaritons (SPPs), the electromagnetic waves traveling along metal-dielectric or metal-air interface, which originate from the interactions between light and collective electron oscillations on metal surface, have received considerable attention for their promising applications in the future optical field, such as image, breaking diffraction limit, subwavelength-optics microscopy, lithography, etc. However, one of the fundamental issues in plasmonics is how to actively manipulate the propagation direction of SPPs. In this paper, we propose and numerically investigate a graphene-based unidirectional SPP coupler, which is composed of asymmetric plasmonic nanoantenna pairs with a graphene sheet separated by a SiO2 spacer from the gold substrate. The device geometry facilitates the simultaneous excitation of two localized surface plasmon resonances in the entire structure, and consequently, the asymmetric nanoantenna pairs can be considered as being composed of two oscillating magnetic dipoles or as two SPP sources. Because the resonance of the plasmonic antenna pairs depends on the bias voltage applied across graphene sheet and back-gated Au, the phase difference between radiated electromagnetic waves induced by the antenna can be tuned through varying the Fermi level of graphene. Here, approximately a n/2 phase difference between radiated electromagnetic (EM) waves can be acquired at EF 0.81 eV, which indicates that the radiated EM waves can interfere constructively along the direction of the x-axis while interfere destructively along the opposite direction. This directional propagation of EM wave leads to the unidirectional propagation of SPPs. Furthermore, electric field distribution of the cavity demonstrates that the tunability of plasmonic antenna is proportional to the electric field intensity in the vicinity of the graphene region. For our designed structure, the left cavity can provide a significantly larger tunable range than the right one. With this result, we can quantitatively analyze the tuning behavior of graphene-loaded plasmonic antenna based on equivalent circuit model, and draw the conclusions that the unidirectional SPP propagation effect originates from the interference mechanism. In addition, compared with the device reported previously, our proposed device possesses a huge extinction ratio (2600) and more broadband tunable wavelength range (6.3-7.5 m). In addition, it is possible to make up for the deficiencies of current nanofabrication technologies by utilizing its actively controlled capability. All the above results indicate that the proposed active device promises to realize a compactable, tunable, and broadband terahertz plasmonic light source. It will play an important role in future photonic integrations and optoelectronics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3