Electromagnetic scattering characteristics analysis of freak waves and characteristics identification

Author:

Wu Geng-Kun ,Song Jin-Bao ,Fan Wei ,

Abstract

Based on the Longuet-Higgins wave model theory, a modified phase modulation method of simulating freak waves is improved in this paper. The method can generate freak waves at assigned time and place, and their waveforms can not only maintain the frequency spectrum structure of the target spectrum and also satisfy the wave series statistics to a great extent. Then, the electromagnetic backscattering model of freak and background wave is established by the finite difference time domain method and the two-scale method. After averaging relative deviation and analyzing the error of the root mean square deviation within the measurement uncertainties, considering the computational efficiency, we use the two-scale model method to calculate the electromagnetic scattering coefficient of freak wave. Numerical results show that the normalized radar cross section (NRCS) of freak wave is much smaller than that of background wave. On the other hand, we analyze the electromagnetic scattering properties of freak waves under the different polarization modes, incident angles and incident frequencies. We find that in the condition of grazing incidence, the backscatter coefficient of freak wave increases with the increase of the incident frequency, but the increase amplitude is reduced, which meets the rough surface scattering theory. When the incident frequency is fixed and the incident〉is small, the backscatter coefficient calculation results of freak wave are similar under the condition of different polarizations VV's and HH's, but the backscatter coefficient of freak wave decreases obviously with the increase of incident angle, which is caused by the radar electromagnetic wave that is parallel to the sea surface and contacts it gradually. In addition, we find that the backscatter coefficient calculation result of freak waves under the VV polarization is much higher than under HH polarization from the two groups of experimental figures. According to the result of datum analysis, a conclusion is drawn that we can determine where the freak wave is when the NRCS difference of synthetic aperture radar (SAR) image is smaller than -11.8 dB. In the practical engineering application, the characteristic parameters are difficult to observe, while the difference in electromagnetic scattering coefficient between freak wave and background wave can be calculated from the SAR image of sea surface. This conclusion provides a reference standard for predicting the freak waves in engineering application, through which we can calculate the characteristic parameters of freak wave, determine its position, and study the electromagnetic scattering characteristics under the different polarization modes, incident angles and incident frequencies in future researches.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Berlin:Deblik)

2. Didenkulova I I, Slunyaev A V, Pelinovsky E N, et al. 2006 Natural Hazards and Earth System Sciences 6 1007

3. Kharif C, Pelinovsky E 2003 Europ. J. Mech. 22 603

4. Kim N, Kim C H 2003 Int. J. Offshore and Polar Engineering 13 38

5. Pei Y G, Zhang N C, Zhang Y Q 2007 Acta Oceanol. Sin. 29 172 (in Chinese)[裴玉国, 张宁川, 张运秋 2007 海洋学报 29 172]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3