Author:
Lin Dan-Ying ,Qu Jun-Le ,
Abstract
The diffraction of the finite aperture in the optical imaging system restricts further improvement of the resolution of optical microscopy, which is called the diffraction limit. Since raised by Ernst Abbe in 1873, the problem of diffraction limit has been one of the foci of academic research. In recent years, with the rapid development of related fields such as the development of optoelectronic devices including high energy lasers and high sensitivity detectors and the development of new fluorescent probes, the problem of diffraction limit in optical microscopy ushered in a new opportunity, and super-resolution microscopy (SRM) has made remarkable achievements in the past decade. The basic principles of diffraction limited resolution in both space and frequency domains are reviewed, and on this basis, the mechanisms for the various SRM technologies to circumvent the diffraction limit and improve the resolution are explained in detail. The development trends and research directions of various SRM techniques are also introduced. As a new and important development trend of SRM, correlative super-resolution microscopy and its recent progress are reviewed, including correlative studies on SRM and time-lapse live cell fluorescence microscopy, fluorescence lifetime imaging microscopy, spectrometry and spectroscopy, electron microscopy, atomic force microscopy, etc. The role and significance of various correlative super-resolution microscopy are discussed. The future development of super-resolution microscopy and correlative super-resolution microscopy is also prospected.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference101 articles.
1. Volkmann H 1966 Appl. Opt. 5 1720
2. Airy G B 1835 Trans. Cambridge Philos. Soc. 5 283
3. Yu D Y, Tan H Y 2011 Engineering Optics (3rd Ed.) (Beijing: China Machine Press) p400 (in Chinese) [郁道银, 谈恒英 2011 工程光学(第三版) (北京: 机械工业出版社) 第400页]
4. Su X Y, Li J T, Cao Y P, Zhang Q C 2011 Information Optics (3rd Ed.) (Beijing: Science Press) p74 (in Chinese) [苏显渝, 李继陶, 曹益平, 张启灿 2011 信息光学(第三版) (北京: 科学出版社) 第74页]
5. Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献