Experimental study on two-photon fluorescence and coherent anti-Stokes Raman scattering microscopy

Author:

Hou Guo-Hui ,Luo Teng ,Chen Bing-Ling ,Liu Jie ,Lin Zi-Yang ,Chen Dan-Ni ,Qu Jun-Le ,

Abstract

Two-photon excitation fluorescence (2PEF) and coherent anti-Stokes Raman scattering (CARS) are both third-order nonlinear optical processes, but for a long time, the true relationship and differences between them are not clearly understood. For decades, the second harmonic generation has been studied in conjunction with two-photon excitation fluorescence, so it was thought that the latter was a second-order nonlinear optical process. In order to make the two nonlinear interaction processes clear enough, the two nonlinear interaction processes are worthy to study at the same time. In this paper, firstly, we give the relationships between the 2PEF, CARS signal and their third-order nonlinear susceptibility, respectively; secondly, we use our own near infrared super-continuum CARS microscopy system to study both processes. In doing so, we describe the relationship between their third-order nonlinear susceptibility and the signal. The reconstructed images derived from CARS and those derived from 2PEF differ significantly when imaging the same 1.01 $\muup$m fluorescence polystyrene beads. If the lateral spatial resolution of the CARS imaging system is larger than the fluorescence polystyrene beads, the measured size cannot be used to calculate the real spatial resolution of the CARS system. However, the resolution of the 2PEF microscopy system can be obtained through the de-convolution of the 2PEF image, which is approximately equivalent to the current resolution of the CARS imaging system, which is measured using 280 nm polystyrene beads. The images of 280 nm polystyrene beads and 190 nm fluorescent polystyrene beads also exhibit differences between the two samples and the environment around them, respectively. This means that although CARS and 2PEF are both third-order nonlinear optical processes, they have their own properties. In particular, CARS is a third-order nonlinear optical oscillation process which is caused by the phasing match condition, but 2PEF is not influenced by the phasing match condition. The phase matching condition is responsible for the differences around the sample in the images of the 280 nm pure polystyrene beads, but not for the 190 nm fluorescent polystyrene beads. The de-convolution results for the 1.01 $\muup$m fluorescence polystyrene beads and the 280 nm pure polystyrene beads are very similar, so we can use the de-convolution results for 2PEF by the 1.01 $\muup$m fluorescence polystyrene beads to approximate the current measure condition and the resolution of the CARS imaging system. If we want to gain a more accurate resolution from the CARS imaging system, the spherical sample should be smaller than the lateral spatial resolution of this system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference12 articles.

1. Potma E O, Xie X S N 2008 Handbook of Biomedical Nonlinear Optical Microscopy (New York: Oxford University Press) pp412-435

2. Potma E O, Xie X S N 2008 Handbook of Biomedical Nonlinear Optical Microscopy (New York: Oxford University Press) pp164-186

3. Zhang D, Slipchenko M N, Cheng J X 2011 Phys. Chem. Lett. 2 1248

4. Nestor J R 1978 Chem. Phys. 69 1778

5. Göeppert-Mayer M 1931 Ann. Phys. 9 273

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3