Image restoration and enhancement based on phase conjugation of optical parametric amplification

Author:

Wang Cong ,Yang Jing ,Pan Xiu-Juan ,Cai Gao-Hang ,Zhao Wei ,Zhang Jing-Yuan ,Cui Da-Fu ,Peng Qin-Jun ,Xu Zu-Yan , , ,

Abstract

It is well known that the weak optical image can be amplified based on the optical parametric amplification (OPA), and the distorted wave-front can be recovered by the optical phase conjugation (OPC) method. In this paper, weak infrared images, which are barely recognizable after the propagation through the milk emulsion, are restored and optically amplified based on phase conjugation of OPA.The OPC property of OPA is demonstrated with a type-II phase matched nonlinear optical crystal KTiOPO4 (KTP). The near-infrared image at 1064 nm is the input of OPA as the signal beam, and a 10 Hz, mJ-level, 21 ps 532 nm laser is used as the pump beam. When the spatial and temporal overlap are achieved, the attenuated optical image is amplified. Due to the difference in polarization, the idler beam of the OPA is selected and detected with the CCD and the blurred image is restored by the re-entry of the turbid media.The resolution of restored image is 12 lines/mm, which has achieved a theoretical limit. Moreover, by combining the optical gain of the OPA process, over 17 dB image amplification is obtained, which is the highest for the OPC-based image restoration in turbid media to our knowledge. The significant improvement in image quality is also demonstrated by 160% increase of the peak signal-to-noise ratio. By taking advantage of tunability of the OPA, the operational wavelength of this technique can be extended to an optical therapeutic window, which is suitable for noninvasive image restoration, enhancement and detection.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Night image enhancement based on pixel level adaptive image fusion;Chinese Journal of Liquid Crystals and Displays;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3