Traveling wave solutions of the cylindrical nonlinear Maxwell's equations

Author:

Hu Liang ,Luo Mao-Kang ,

Abstract

Study on propagation of cylindrical electromagnetic waves in various inhomogeneous and nonlinear media is of fundamental importance, which can be described by the cylindrical nonlinear Maxwell's equations. In recent years, finding exact solutions for these equations has emerged as a popular research topic. The exact solutions play an irreplaceable role in understanding and predicting physical phenomena, and developing numerical calculation methods, and so on. However, due to the extreme complexity of nonlinear partial differential equations, exact solutions of the cylindrical Maxwell's equations were only able to be obtained in a nonlinear and nondispersive medium whose dielectric function is an exponential function in previous researches. Actually, there is no general method at present which can exactly solve arbitrary cylindrical nonlinear Maxwell's equations. Therefore, finding physically admissible solutions meeting certain particular condition for the cylindrical nonlinear Maxwell's equations might be feasible. In this paper, we discuss the traveling wave solutions which are very important in electromagnetic theory, especially in solitary wave theory. To our knowledge, research on obtaining traveling wave solutions of the cylindrical nonlinear Maxwell's equations is still lacking. The main conclusions in this paper are listed as follows. Firstly, we introduce the cylindrical nonlinear Maxwell's equations mentioned in some previous publications, which can describe cylindrical electromagnetic waves propagation in inhomogeneous nonlinear and nondispersive media. In this paper, we focus on the nondispersive media with arbitrary nonlinearity and power-law inhomogeneity. Secondly, we point out that the electric field component E of the model has no plane traveling wave solutions E=g(r-kt), after theoretical analysis and study. Then generalized traveling wave solutions in form of E=g(lnr-kt) for the electric field component are obtained by finding correct variable substitution and solving second-order nonlinear ordinary differential equation.Finally, we provide two examples to show the physical meanings of our generalized traveling wave solutions. We find that the transmitting speeds of vibrations vary with different points of the electric field. Actually, the transmitting speed of the vibration of a certain point closer to the cylinder center is lower. As a result, we observed a physical phenomenon similar to that of self-steepening. Our work can be used to analyze the electromagnetic properties of ferroelectric materials and new materials. Theoretically, it can also provide an approach to studying the cylindrical nonlinear Maxwell's equations.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference38 articles.

1. Ye P X 2007 Nonlinear Optical Physics (Vol. 1) (Beijing:Peking University Press) pp17-18 (in Chinese)[叶佩弦 2007 非线性光学物理 (北京:北京大学出版社) 第17-18页]

2. Yao B, Zheng Q H, Peng J H, Zhong R N, Xiang T, Xu W S 2011 Chin. Phys. Lett. 28 118401

3. Zhang M, Li L S, Zheng N, Shi Q F 2013 Chin. Phys. Lett. 30 077802

4. Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York:Van Nostrand Reinhold) p161

5. Ertrk V B, Rojas R G 2003 IEEE Trans. Antenn. Propag. 51 739

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3