Effects of anisotropic interface kinetics and surface tension on deep cellular crystal growth in directional solidification

Author:

Jiang Han ,Chen Ming-Wen ,Wang Tao ,Wang Zi-Dong , ,

Abstract

In this paper, we study the effects of anisotropic interface kinetics and surface tension on deep cellular crystal growth in directional solidification. The following assumptions are made: the process of solidification is viewed as a two-dimensional problem; the minor species in this binary mixture system is considered as an impurity; the solute diffusion in the solid phase is negligible; the thermodynamic properties other than the diffusivities are the same for both solid and liquid phases; there is no convection in the system; the anisotropic interface kinetics and the anisotropic surface tension are a four-fold symmetry function each; neither the preferred directions of the anisotropic interface kinetics nor the anisotropic surface tensions are necessarily the same as their counterparts for the solid and liquid phases respectively; the angle between the preferred directions of the two anisotropies is 0. By using the matched asymptotic expansion method and the multiple variable expansion method, we obtain the diagram of interface morphology for a deep cellular crystal in directional solidification. The results show that there exists a discrete set of the steady-state solutions subject to the quantization condition (35). The quantization condition yields the eigenvalue ???106801-20170033???* as a function of parameter and other parameters of the system, which determines the interface morphology of the cell. The results also show the variation of the minimum eigenvalue ???106801-20170033???*(0) with parameter . It is seen that when the preferred directions of the two anisotropies are the same, i.e., 0 = 0, the minimum eigenvalue ???106801-20170033???*(0) reduces with the increase of anisotropic surface-tension coefficient 4 , increases with the augment of parameter , and is unrelated to anisotropic interface kinetic coefficient 4 in the low order; when the angle 0 0 /4, as the 0 increases, the minimum eigenvalue ???106801-20170033???*(0) increases; when the angle /4 0 /2, as the 0 increases, the minimum eigenvalue ???106801-20170033???*(0) decreases. In addition, the results show the composite solution for the interface shape function B described on (X, Y) plane. It is seen that both of the anisotropy and the angle 0 have a significant effect on the total length and the root of deep cellular crystal, however, have little influence on the other solid-liquid interface, such as the top of deep cellular crystal. When the angle 0 is 0, as anisotropic coefficient increases, the total length of the finger increases, the curvature of the interface near the root increases or the curvature radius decreases. It is found that the influence of the anisotropic surface-tension coefficient on interface morphology is more remarkable than that of the anisotropic interface kinetics coefficient. when the angle 0 0 /4, as the 0 increases, the total length of the finger decreases, the curvature of the interface near the root decreases or the curvature radius increases; when the angle /4 0 /2, as 0 increases, the total length of the finger increases, the curvature of the interface near the root increases or the curvature radius decreases.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3