Mechanism of the motion of spherical microparticle induced by a collapsed microbubble

Author:

Wei Meng-Ju ,Chen Li ,Wu Tao ,Zhang Hong-Yan ,Cui Hai-Hang ,

Abstract

Collapse of a confined bubble is the core problem of bubble dynamics. The recent study has shown that the collapse of macroscopic bubble may drive the motion of suspended particle with the similar size, but, there has still been a lack of the relevant study on a microscale. In the experiment about the bubble driven micro-motor, the locomotion of motor pushed by microjetting has been noticed. However, due to the limitation of experimental conditions, it is difficult to reveal the details of propulsion mechanism. In this paper, the volume of fluid based numerical method is adopted to simulate the interaction process between a collapsing microbubble and the suspended particle nearby. The spatial distribution and the time evolution of flow field are obtained, and the velocity that the micromotor could be achieved is deduced by integrating the impulsive force. The results show that when the bubble size is fixed, the interaction force is inversely proportional to the size of microparticle and the gap between microparticle and bubble. The Kelvin impulse theorem is used to clarify the difference between the interaction on a macroscopic scale and that on a microscopic scale. This study not only extends the scope of cavitation dynamics, which reveals the characteristics of interaction between bubble and particle on a microscale, but also is significant for improving the efficiency of self-propelled micro-motor.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Yang F, Chen W Z, Tang X L 2009 Fluid Mach. 37 36(in Chinese)[杨帆, 陈伟政, 唐学林2009流体机械37 36]

2. Huang J T 1991 Principle and Application of Cavitation (Beijing:Tsinghua University Press) p2(in Chinese)[黄继汤1991空化与空蚀的原理及应用(北京:清华大学出版社)第2页]

3. Blake J R, Taib B B, Doherty G 1987 J. Fluid Mech. 181 197

4. Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

5. Gregorčič P, Petkovšek R, Možina J 2007 J. Appl. Phys. 102 094904

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3