First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy

Author:

Yan Shun-Tao ,Jiang Zhen-Yi ,

Abstract

As is well known,copper is such an unbelievable element that it can affect the phase transition behaviors of binary TiNi alloy when it displaces Ni element up to near upon 25%.The martensitic transition behaviors of TiNi1-xCux alloys appear from high-temperature cubic B2 phase to intermediate B19 structure with orthorhombic system and then finally to low-temperature B19' phase with monoclinic system with x 10% on cooling,so called two-stage martensitic phase transformation.Whereas,it directly transforms into orthorhombic B19 phase withx 20% on cooling,so called one-stage martensitic phase transformation.The orthorhombic B19 phase becomes final low-temperature phase while monoclinic phase will be unstable on cooling.The electronic structures and the formation energies of various point defects, Mulliken bond orders,etc.are studied for TiNi1-xCuxx alloys,however,the phase transition pathway at an atomic level has not been described at all,and further,the difference in transition pathway between TiNi and Ti1Ni1-xCuxx has not been understood so far.In this work,we optimize the crystal structures of TiNi and Ti50Ni25Cu25 alloys with initial geometry from experimental data.In order to choose the proper positions of Cu atom,we calculate the total energy of each doping system and find the most stable configuration.To study the transformation mechanism of TiNi,we calculate the phonon-dispersion spectra of each phase with both frozen-phonon method and linear response method,and then find the atomic vibrations with the imaginary frequency.Finally,with the help of this atomic vibration direction with negative frequency,we find the intermediate structures by the linear interpolation method and calculate their total energies.The phase transformation of TiNi from cubic to orthorhombic phase is driven by the phonon softening at the M point (0.5,0.5,0) of Brillouin zone.For orthorhombic and monoclinic phase,TiNi has real phonon frequencies for all k points and modes.A barrier of 1.6 meV is calculated between orthorhombic and monoclinic phase while no barrier is found between cubic and orthorhombic phase of TiNi,so it is easy to transform from cubic to orthorhombic and then to monoclinic phase.There exists a potential energy barrier of 10.3 meV at least between orthorhombic and monoclinic phase for Ti50Ni25Cu25,which is too high for its transition to overcome the maximum value of potential energy which corresponds to =93.4.The difference in transition pathway between TiNi and Ti50Ni25Cu25 accords well with the experimental measurement,so that the copper concentration with 25% in binary TiNi alloy will offer a new transition path from cubic to orthorhombic phase.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3