Efficiency at arbitrary power for the Curzon-Ahlborn heat engine in linear and nonlinear heat transfer processes

Author:

Li Qian-Wen ,Li Ying ,Zhang Rong ,Lu Can-Can ,Bai Long ,

Abstract

The optimal performance of heat engine is an important issue in thermodynamics, but the heat transfer between the working medium and two heat reservoirs induces the irreversibility during the operation of heat engine. Based on two important parameters introduced in this paper(namely, the power gain and the efficiency gain), for heat engine operating in the linear and nonlinear heat transfer processes, the formula for the efficiency at arbitrary power is achieved in terms of a simplified Curzon-Ahlborn heat engine model and the componendo and dividendo rule. The features of heat engine at arbitrary power output are also discussed in detail based on the numerical calculations. It is indicated that the parameter as a function of the power gain P contains two branches:the efficiency shows the monotonous variation on the first branch (the favorable case); the efficiency exhibits the non-monotonous characteristics and has the maximum value on the second branch(the unfavorable case). The working region of the heat engine is reduced as the heat transfer exponent increases, which results from the radiative contribution in the nonlinear heat transfer process. For the first branch, the contour-line plot of versus TL/TH and P clearly demonstrates that has the decreasing trend with increasing TL/TH and|P|; for the second branch, monotonically deceases as TL/TH increases, but shows the non-monotonic behaviors as|P|increases. The efficiency has the maximum value in the region where TL/TH and|P|have the small values, and the working regime of heat engines in the nonlinear heat transfer process is relatively small due to the complexity of the nonlinear heat transfer process. The curves of the efficiency in two heat transfer processes are loop-shaped, when|P| 0 and|P| 1, the curves of ~P in two heat transfer processes are same. But in other regimes, the efficiency of the heat engine with the linear heat transfer process is bigger than in the nonlinear heat transfer process. Furthermore, it is found that a considerably larger efficiency can be obtained when heat engine working close to the maximum power. This implies that there exists the trade-off working point where the heat engine can perform the most effective heat-work conversion. In addition, the curves of the power gain vs. the efficiency gain also display the loop-shaped characteristics, but there is the weak difference on the second branch. Our results are very conducive to understanding the optimal performance of heat engines in different heat transfer processes.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3