Analysis of planar shear deformable beam using rotation field curvature formulation

Author:

Zhang Da-Yu ,Luo Jian-Jun ,Zheng Yin-Huan ,Yuan Jian-Ping , ,

Abstract

In recent years, research on space debris removal technique has received wide attention in aerospace field. Many novel concepts on active flexible debris remover have been proposed, such as flexible flying net, tethered cable manipulator. In view with the high flexibility and large deformation of this kind of structure, the implementation of attitude control is challenging. An accurate dynamic model of highly flexible structure is important and needed. The beam element is the most common element adopted in flexible remover models. So, in this investigation, a rotation field-based curvature shear deformable beam using absolute nodal coordinate formulation (ANCF) (named RB-curvature ANCF beam) is proposed and its geometrically nonlinear characteristic under large deformation motion is studied. Curvature is first derived through planar rotation transformation matrix between the reference frame and current tangent frame of beam centerline, and written as an arc-length derivative of the orientation angle of the tangent vector. Using the geometrically exact beam theory, the strain energy is expressed as an uncoupled form, and the new curvature is adopted to formulate bending energy. Based on the ANCF, the dynamic equation of beam is established, where mass and external force matrices are constant. In order to validate the performance of proposed beam element, other two types of beams are introduced as the comparative models. One is the classical ANCF fully parameterized shear deformable beam derived by continuum mechanics theory, and the other is position field-based curvature ANCF shear deformable beam (named PBcurvature ANCF beam). The PB-curvature model is evaluated by differentiating unit tangent vector of beam centerline with respect to its arc length quoted from differential geometry theory. A series of static analysis, eigenfrequency tests and dynamic analysis are implemented to examine the performance of the proposed element. In static analysis, both small and non-small deformation cases show that the proposed RB-curvature ANCF beam achieves the faster speed, higher precision and good agreement with analytical solution in the case of cantilever beam subjected to a concentrated tip force, which is compared with other two beam models. The eigenfrequency analysis validates RB-curvature ANCF beam in a simply supported beam case that converges to its analytical solution. Meanwhile, the mode shapes of the proposed ANCF beam could be correctly corresponded to vibration state of element with respect to each different eigenfrequency. In the dynamics test, a flexible pendulum case is used and simulation results show that the proposed RB-curvature ANCF beam accords well with ANSYS BEAM3, classical ANCF shear beam and PB-curvature ANCF beam in vertical displacements of tip point and middle point. Since deformation modes are uncoupled in the cross section of proposed beam element, its shear strain is achieved with much better convergence in the case of lower elastic modulus, and shear locking is significantly alleviated, compared with classical ANCF beam. Therefore, RB-curvature ANCF shear deformable beam element proposed in this paper is able to describe accurately geometric nonlinearity in large deformation problem, and can be a potential candidate in the modeling of flexible/rigid-flexible mechanisms.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3