Ion irradiation of metallic glasses

Author:

Bian Xi-Lei ,Wang Gang ,

Abstract

Metallic glasses (MGs), as new disordered materials prepared by rapidly quenching melted alloys, have attracted tremendous attention in the material science community. Due to their long-ranged disorderd and short-ranged ordered structures, MGs usually exhibit uniquely physical, chemical and mechanical properties, which give rise to promising applications in many fields, and especially they are expected to be potentially structural materials used in irradiation conditions, such as in nuclear reactors and aerospace.In this paper, the effects of ion irradiation on the microstructure, mechanical properties, physical, and chemical properties of MGs are reviewed. It is found that the effects of ion irradiation on the microstructures and mechanical properties depend on the ion energy as well as the composition of MG. When high energy ions interact with a solid, the collisions take place between the incident ions and atoms of the solid, which are dominated by inelastic processes (electronic stopping) and elastic processes (nuclear stopping). The inelastic processes result in the excitation and ionization of substrate atoms. In contrast, the elastic processes lead to ballistic atomic displacements. Nuclear stopping can produce structure defects and irradiation damage in glassy phase. The collisions between the incident ions and the target atoms in MGs can cause the target atoms to deviate from their original positions, and leave a large number of vacancies and interstitial atoms behind. The separations between the vacancies and the interstitial atoms form displacement cascades. The interstitial atoms with a low kinetic energy can transfer self-energies to thermal energies, resulting in a thermal spike due to the accumulation of a large quantity of the thermal energies from interstitial atoms. Such a thermal spike will cause MGs to melt and resolidify, which therefore makes the structure of glassy phase changed. Furthermore, the ion irradiation can modify the structures of MGs by introducing excessive free volumes and promoting the mobilities of atoms, which leads to the dilatation of the glassy phase and nanocrystallization. The increase of free volumes softens the MGs, and then causes the plastic deformation mechanism to transform from a heterogeneous deformation to a homogeneous deformation, which significantly enhances the plastic deformation ability.This review paper can not only improve the understanding of the relationship between microstructure evolution and macroscopic mechanical properties, and provide an experimental and fundamental basis to understand the deformation mechanism of MGs, but also summarize the performances of MGs under high dosage of ion irradiation. Moreover, it is of fundamental and practical importance for engineering applications of such advanced materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference42 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3