High harmonic generation experiments based on solid-state supercontinuum

Author:

Liu Yang-Yang ,Zhao Kun ,He Peng ,Jiang Yu-Jiao ,Huang Hang-Dong ,Teng Hao ,Wei Zhi-Yi , , ,

Abstract

Intense few-cycle pulses are widely used in transient light synthesis,high harmonic generation (HHG) and especially in isolated attosecond pulse generation.To obtain intense few-cycle pulses,the intense supercontinuum is needed.The traditional way to generate intense supercontinuum is using rare gas filled hollow-core fibers.Since the input energy of hollow-core fiber system is limited to a level of tens of mJ,it is necessary to find new ways to achieve energy scaling.In this paper we demonstrate the efficient generation of supercontinuum by solid thin plates,compression and its application in HHG. The Ti:sapphire laser used in the present experiment emits 0.8 mJ in energy with a duration of 30 fs at 1 kHz.After passing through a 3:1 telescope,the beam has a diameter changed from 12 mm to 4 mm.Then the laser is focused by an f=2000 mm lens into a 600 m-diameter spot.After propagating through 7 fused silica plates placed at Brewster's angle (55.5) with a thickness of 0.1 mm,the 0.7 mJ octave spanning supercontinuum is achieved,corresponding to an efficiency of 87.5%.The first three plates are placed at 31,11,2.5 mm in front of the beam waist,and the last four plates are placed at 2,7,12,17 mm behind the beam waist respectively.With a pair of wedges and 4 pairs of chirped mirrors,the 0.68 mJ supercontinuum is compressed to a duration of 6.3 fs,which is measured by TG-FROG. The 0.5 mJ,6.3 fs pulse is used to perform high-harmonic generation experiment.The beam diameter is 150 m when focused by an f=400 mm lens,with a laser intensity of 8.11014 W/cm2.The 1 mm Ne gas jet is used to perform HHG experiment with a back pressure of 300 mbar.To block the near-infrared light,a 150 m Zirconium foil is placed behind the gas jet.Then the XUV spectrum is detected by a spectrometer,which consists of a flat field grating and a CCD camera.For driving pulses of few-cycle regime without dispersion,the cutoff spectrum of HHG is continuous.But when the pulse is stretched by positive or negative dispersion,the cutoff spectrum turns discrete.The HHG result is that the cutoff region is continuous when the wedge is in a certain place.Then by increasing or reducing the insertion of the wedge,the cutoff spectrum becomes discrete.Our result is consistent with HHG generated by few-cycle pulses. In conclusion,we demonstrate high-harmonic generation based on supercontinuum generated by solid thin plates. The 0.7 mJ supercontinuum is achieved when 0.8 mJ pulses are injected to 7 thin fused silica plates.The supercontinuum is compressed to 0.68 mJ,6.3 fs.The 0.5 mJ,6.3 fs pulse is used to perform HHG experiments.The HHG result was consistent with few-cycle driving pulses.Our research indicates that solid state supercontinuum has great potential applications in HHG and isolated attosecond pulse generation.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3