Design and research of three-dimensional thermal cloak with arbitrary shape based on the transformation thermodynamics

Author:

Xia Ge ,Yang Li ,Kou Wei ,Du Yong-Cheng ,

Abstract

Based on the form-invariance of the thermal conduction equation different from wave equation, transformation thermodynamics has opened up a new area for the arbitrarily manipulating of heat fluxes at discretion by using thermal metamaterials. Moreover, it can help researchers to design different kinds of thermal devices with many unique properties that cannot be simply realized by natural materials, such as thermal cloaking, thermal concentrating, thermal rotating and thermal illusion. Among these devices, the conventional thermal cloak enabling heat fluxes to travel around the inner region, has attracted the most significant attention so far. At the present time, the studies of the thermal cloak mainly focus on two-dimensional space with arbitrary shape and three-dimensional space with regular shape, which appear to be far from enough to meet the engineering requirements. In this paper, we derive the general expression of the thermal conductivity for three-dimensional thermal cloak with arbitrary shape according to the transformation thermodynamics. In this paper, the thermal conductivity in the polar coordinate system is transformed into that in the Cartesian coordinate system by means of coordinate transformation. On the basis of the expression of the thermal conductivity, we adopt full-wave simulation by using the software COMSOL Multiphysics to analyze the cloaking performances of five designed thermal cloaks, i.e., spherical thermal cloak, ellipsoidal thermal cloak, three-dimensional conformal thermal cloak with arbitrary shapes, non-conformal thermal cloak with the sphere outside the ellipsoid, and three-dimensional non-conformal thermal cloak with arbitrary shapes. The results show that the heat fluxes travel around the protection area, and eventually return to their original paths. The temperature profile inside the thermal cloak keeps unchanged, and the temperature field outside the thermal cloak is not distorted, which proves that the cloak has a perfect thermal invisible effect. Both the conformal and non-conformal thermal cloak have perfect thermal protection and invisible function. In this paper, the transformation thermodynamics is extended from two-dimensional thermal cloak to three-dimensional thermal cloak with better universality. At the same time, this technology provides more flexibility in controlling heat flow and target temperature field, which will have potential applications in designing microchip, motor protection and target thermal stealth. It is believed that the method presented here can be applied to other branches of physics, such as acoustics, matter waves and elastic waves.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3