Sonic point position and critical pressure ratio in non-uniform microchannels

Author:

Ding Ying-Tao ,He Feng ,Yao Zhao-Hui ,Shen Meng-Yu ,Wang Xue-Fang ,

Abstract

Non-uniform microchannels are used in the micro space propulsions and micro gas turbine generators. The performances of these applications are determined primarily by the performance of the microchannel used. Based on the micro-fabrication technology, three-dimensional rectangular cross-section straight-convergent-divergent-straight (SCDS) microchannel was fabricated. Its width in the throat cross-section was 16μm, the depth was 20μm and the contraction ratio was 1.625∶1 For different inlet-to-outlet pressure ratios, the volume flow rate characteristics of nitrogen were measured experimentally. The pressure ratios ranged from 1.0 to 4.0, outlet volume flow rate ranged from 0 to 0.12 mL/s and outlet Reynolds number was less than 350 The gas flow characteristics were analyzed by numerical simulation based on finite-volume method. Good agreements between computational results and experimental data were found. The simulation results indicate that two novel behaviors are different from that at conventional scales. One is the first sonic point position, the other is the critical pressure ratio(the critical pressure ratio is defined as the local-to-inlet pressure ratio , here the local pressure corresponding to the pressure at the first sonic point in the internal flow of SCDS microchannel). These two novel behaviors should be attributed to the surface effects. Due to the larger surface-to-volume ratio (S/V) for microchannels, the factors related to the surface effects have more impact on the microflow. So the relationships between novel behaviors and the value of S/V are discussed further.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3