Reservoir neural state reconstruction and chaotic time series prediction

Author:

Han Min ,Shi Zhi-Wei ,Guo Wei ,

Abstract

ESN(Echo state network) is a new type of recurrent neural network, which is based on the “reservoir”. ESN has been proved to be significantly efficient to deal with some chaotic time series prediction tasks. This paper makes an analysis of the current iterative prediction method based on “reservoir”, and points out some problems in theory and the obstacles in application. And then, a direct prediction method is proposed, which relates the prediction origin and prediction horizon directly. The direct method does not close the loop in the process of prediction, so there are no such problems as instability and error accumulation. The simulation results show how the reservoir property changes when the loop is closed in the iterative prediction, and then demonstrate the feasibility of the direct prediction method in application to the Mackey-Glass benchmark prediction problem.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3