Properties of electric transport in crystallized silicon films under different annealing temperatures

Author:

Song Chao ,Chen Gu-Ran ,Xu Jun ,Wang Tao ,Sun Hong-Cheng ,Liu Yu ,Li Wei ,Chen Kun-Ji ,

Abstract

Hydrogenated amorphous Si thin films were prepared by plasma-enhanced chemical vapor deposition. As-deposited samples were annealed at different temperatures to obtain nano-crystalline Si. During the transition process from amorphous to nano-crystalline structure, Raman scattering spectroscopy was used to characterize the changes of microstructures. The temperature-dependent conductivity was measured in order to understand the electric transport processes in the films. It was found that the crystallization occurs at around 700 °C. The crystal volume fraction (Xc) increases with the increase of annealing temperature, and in the case of the Si film annealed at 1000 ℃, the Xc is beyond 90%. The carrier transport characteristics in the films annealed at the different temperatures are different from the as-deposited film. For the sample annealed at 700 ℃, the carrier transport is strongly influenced by the defect states resulting from the effusion of hydrogen, and it is controlled by the hopping conduction of the localized states in the difference measurement temperature regions causing the dual activation energies. For the highly crystallized Si film annealed at 1000 °C, the transport process is strongly influenced by the transport of the extended states in the crystalline silicon, while in the high temperature region, the quantum tunneling process plays an important role in the carrier transport property.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3