Drowsiness detection using Raspberry Pi for EVs and smart cars

Author:

Ooppakaew Wichian,Onshaunjit Jakkrit,Srinonchat Jakkree

Abstract

Drowsiness detection is highly significant in assuring the safety and effectiveness of intelligent automobiles and electric vehicles (EVs). It used to be that managing driver fatigue was only a question of comfort for contemporary transportation systems. However, with the rapid improvements that have been made in automotive technology and the growing prevalence of autonomous features, this need has developed into a fundamental requirement. Sleepiness detection systems perform the role of watchful co-pilots by continually monitoring the driver's behavior and sounding alerts or taking other appropriate actions when indicators of tiredness are identified. They are an effective strategy to limit the dangerous practice of sleepy driving, which is responsible for many motor vehicle accidents. These accidents are caused by a combination of factors, including fatigue, distraction, and inattention. In the current investigation, a Raspberry Pi is a real-time monitoring system to determine drowsiness. The dataset had one thousand unique images, each depicting a different feature of a real-world driving event. These images have been organized into the following four categories: open eyes (250 images), closed eyes (250 images), open mouth (250 images), and closed mouth (250 images). During this investigation, the experimental circumstances were looked at during daylight and the evening hours. For the system to function correctly, it relies on the Eye Aspect Ratio (EAR) algorithm and the facial landmarks method. The recommended strategy showed a higher degree of accuracy when put into practice. However, the study found that false negative blinks were noticed due to noise that could not be repaired within the collected signal. In the future, we want to concentrate our research efforts on determining whether or not the recommended technique is effective in a broader variety of contexts.

Publisher

Rajamangala University of Technology Thanyaburi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3