WO3/Bi2WO6 photoanode enhancement for photoelectrocatalytic water oxidation; scan rate effect optimization in the cyclic voltammetry deposition method

Author:

Uttayanil Titsucha,Ponchio Chatchai

Abstract

The photoelectrocatalytic approach is a very efficient technology for eliminating microorganisms and organic contaminants. The development of photoanode is widely recognized as a crucial approach to enhancing the efficiency of photoelectrocatalytic cells. The key goal of this methodology is to enhance the efficacy of photoelectrocatalytic oxidation by optimizing composited photoanode fabrication. This research development focuses mainly on fabricating composite WO3/Bi2WO6 semiconductor thin films with high water oxidation efficiency and favorable photoelectrocatalytic E. coli degradation applications. Cyclic voltammetry was utilized to create WO3/Bi2WO6 thin coatings on conducting glass while optimizing the photoelectrocatalytic activity via the scan rate parameter. The characteristics of the developed electrode, including charge transfer resistance, optical properties, morphology, crystal structure, chemical composition, and oxidation numbers, were investigated to improve photoelectrocatalytic activity. It was observed that the scanning rate significantly influenced the characteristics of the WO3/Bi2WO6 electrode and the photoelectrocatalytic activity on water oxidation.  It was discovered that the WO3/Bi2WO6 electrode prepared with a scan rate of 25 mV/s exhibited the greatest photoelectrocatalytic water oxidation as well as distinguishing characteristics from other conditions. The decision to utilize decreased scanning rates has been determined to optimize the reaction kinetics and improve the film-forming properties of WO3/Bi2WO6. Significantly, the developed electrode can also be used to eliminate 87.5% of E.coli in 15 minutes via a photoelectrocatalytic catalytic mechanism. The photoanode composed of WO3/Bi2WO6 has promising capabilities in removing microorganisms and organic pollutants, making it a viable candidate for future advancements in wastewater management applications.

Publisher

Rajamangala University of Technology Thanyaburi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3