Cellulose rubber foam composite use as oil absorbent

Author:

Klaykhem Poptorn,Pantamanatsopaopa Pruttipong,Ariyawiriyanan Warunee

Abstract

The focus of this study was to explore the fabrication of cellulose rubber foam (CRF) using kapok fibers (KF) as an oil absorbent material. Chemical methods such as sodium hydroxide surface treatment, hydrogen peroxide treatment, and acid hydrolysis were employed to prepare cellulose nanocrystals (CNC). The results of the nuclear magnetic resonance (NMR) spectroscopy test indicated that the chemical modification of kapok fiber resulted in the removal of lignin and hemicellulose by a disappearing peak at 17, 52, and 148 ppm, respectively. Hydrolysis process of the kapok fiber resulted in nanometer-sized cellulose, with a yield of 72% as revealed by transmission electron microscopy (TEM). The amount of cellulose nanocrystals from kapok fiber (KF-CNC) used in the study varied from 0 to 5 phr during the formation of the cellulose rubber foam, and it was found that the foam density increased as the number of cellulose nanocrystals from kapok fiber increased. Additionally, the percentage of collapse from the compressive strength of cellulose rubber foam decreased as the amount of cellulose nanocrystals from kapok fiber increased. Fourier transform infrared spectroscopy (FTIR) confirmed the incorporation of cellulose nanocrystals from kapok fiber into the rubber foam (RF) as the amount of cellulose nanocrystals from kapok fiber increased. The oil absorbent of cellulose rubber foam composite with 1 phr cellulose nanocrystals from kapok fiber show highest absorption capacity was 17.8 g/g. The cellulose rubber foam composite absorbs oil before absorbing water when water and oil are combined. Moreover, the cellulose rubber foam could be reused more than 50 times.

Publisher

Rajamangala University of Technology Thanyaburi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3