Supplementary Cementitious Materials and Additives – Effective Measures to Hinder Radon in Concrete

Author:

Abstract

The second largest cause of lung cancer is related to radon (222Rn) and its progenies in our environment. Building materials, such as concrete, contribute to the production of radon gas through the natural decay of 238U from its constituents. The Swedish Cement and Concrete Research Institute (CBI) has examined ten different concrete recipes containing an additive or Supplementary Cementious Material (SCM), such as fly ash, slag or silica and combinations thereof. The SCM´s were added in small to moderate portions and substituted the reference Portland cement (OPC). The inputs of an additive as well as a supplementary cementitious material were made as a mean to investigate their potential influence on the radon exhalation rates of the concrete as well as the radon gas diffusion length (L) that could be expected from the different recipes. Measurements were performed with an ATMOS 33 ionizing pulsation chamber. The results indicate a reduction of the exhalation rate by approximately 10-55 % depending on recipe at an RH of 75 %. The diffusion coefficients, corrected for background subtraction vary in the interval 1.1 x 10-10 – 7.6 x 10-12 m/s2. The diffusion lengths vary between 2 and 9 mm. In the case where the largest reduction of the exhalation rate is achieved, this roughly correspond to >2 mSv per year decrease in effective dose to a human. Consequently, using an additive or a SCM, as part of the mix, would be an option to effectively lower the radon gas exhalation in their initial stage of production. Secondly, the use of additives and SCM´s will contribute to a lower environmental impact (CO2).

Publisher

GUDAPURIS LLC

Subject

Education,Cultural Studies

Reference15 articles.

1. World Health Organization (2009) WHO Handbook on Indoor Radon: a Public Health Perspective. World Health Organization, Geneva; Pp: 110.

2. ISO 11665-7 (2012) Measurement of radioactivity in the environment — Air: radon-222 - Part 7: Accumulation method for estimating surface exhalation rate. International Standard (ISO), 1 Edn, Geneva, Switzerland; Pp: 23.

3. Kovler K (2006) Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site. Journal of Environmental Radioactivity; 86(3): 354-366.

4. Cozmuta I, van der Graaf ER (2001) Methods for mearuing diffusion coefficients of radon in building materials, The Science of the Total Environment; 272(1-3): 323-335.

5. Chauhan RP, Kumar A (2013) Radon resistant potential of concrete manufactured using ordinary portland cement blended with rice husk ash. Atmospheric Environment; 81: 413- 420.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Emergency Light With Led;Journal of Advanced Engineering;2020-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3