Evaluasi Implementasi Algoritma Machine Learning K-Nearest Neighbors (kNN) pada Data Spektroskopi Gamma Resolusi Rendah

Author:

Fajri Muhammad Sholih,Septian Nizar,Sanjaya Edy

Abstract

Abstrak Pada artikel ini kami mengevaluasi bagaimana implementasi algoritma machine learning k-Nearest Neighbors (kNN) pada data spektroskopi gamma beresolusi rendah. Penelitian ini bertujuan untuk mengetahui bagaimana performa kNN dalam mempelajari data tersebut. Kami melakukan berbagai variasi, yaitu: jumlah data training, jumlah data tes, jenis metric, dan nilai k untuk memperoleh performa terbaik dari algoritma ini. Data spektroskopi gamma diambil menggunakan sintilator NaI(Tl) Leybold Didactic dengan resolusi energi sebesar 10.9 keV per channel. Hasil variasi menunjukkan bahwa algoritma kNN memberikan hasil prediksi klasifikasi radioisotop yang sangat fluktuatif.  Abstract In this paper we evaluate the implementation of a machine learning algorithm namely k-Nearest Neighbors (kNN) on low resolution gamma spectroscopy data. The aim is to provide the information of how well the algorithm performs on learning the data. We did the variation of number of training and test data, type of metric used, and values of k in order to see the best performance of the algorithm. The gamma spectroscopy data were taken using NaI(Tl) scintillator made by Leybold Didactic with resolution of 10.9 keV per channel. The variations show that the kNN algorithm produce significantly fluctuating accuracy to the prediction of radioisotope class.

Publisher

LP2M Universitas Islam Negeri (UIN) Syarif Hidayatullah Jakarta

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of the K-Nearest Neighbor Algorithm for Forecasting the Operational Conditions of Natural Gas Pipeline Transmission Networks;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10

2. Wind Tunnel Data Classification A Comparison of Performance Between K-Nearest Neighbor and Artificial Neural Network Algorithm;2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI);2023-09-20

3. Modeling of raw data pattern classification of wind tunnel test data in ILST;THE 10TH INTERNATIONAL BASIC SCIENCE INTERNATIONAL CONFERENCE (BASIC) 2022;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3