Effect of Increasing Phosphorus Doses Application on Some Physical, Chemical and Biological Properties of Soil, Under Long-Term Experiment Conditions.

Author:

IŞIK MehmetORCID, ,ALDOĞAN Serra,SÖNMEZ Mert,İLHAN Seher,ORTAŞ İbrahimORCID, , , ,

Abstract

Phosphorus (P) fertilizers are produced from rock phosphate (apatite); however, they are low-mobility in soil for plant nutrient absorption and uptake. In addition, the rock phosphate quantity is a limited source for future P fertilizer. At the same time, high phosphorus fertilization will cause environmental pollution (such as eutrophication in rivers). Also, a great proportion of applied P fertilizer remains in the soil, reducing the viable soil organisms. Therefore, the effect of different doses of P on some properties of soil (physical, chemical, and biological) is not entirely understood in the literature under long-term experiment conditions. Also, phosphorus fertilizer applications indirectly decrease the plant growth and yield. Under long-term experimental conditions, this research aims to understand the effect of increasing P doses on some physical, chemical and biological properties of the soil. The hypothesis to be tested is that under long-term field experiment conditions, increasing doses of phosphorus fertilizer negatively affect the soil properties. The field experiment was established in 1998 and has continued uninterruptedly to the present time under maize and wheat rotations. Four doses of P fertilizers were applied; such as 0, 50, 100 and 200 kg P2O5 ha-1 application with three replications. P2105 Maize (Zea mays L.) species seeds were sown in June 2022 and harvested in November 2022. At harvest, the soil samples were taken at 0-15 cm and 15-30 cm depth in each plot. Soil pH, EC and available P were analyzed as soil chemical properties. The number of mycorrhizal spores and Soil Organic Matter (by walkley-black method) were determined as soil biological properties. Furthermore, soil bulk density (BD), water stable aggregated (WSA) and mean weight diameter (MWD) were analyzed as soil physical properties. Phosphorus application in increasing doses negatively affects the soil physical properties (such as WSA, MWD and BD) under long-term field experiment condition. The research finding showed that depending on increasing P doses application soil WSA and MWD were decreased but BD was increased. While depending on increasing P doses application soil organic carbon is increased, however, the numerical value of mycorrhizal spores and root colonization was decreased. The results are revealed that for sustainable and eco-friendly crop production, 50 and 100 kg P2O5 ha-1 P fertilizer can be used in maize production.

Publisher

Agricultural & Environmental Technology Development Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3