Predicting salt damage in practice: A theoretical insight into laboratory tests.

Author:

Flatt Robert,Aly Mohamed Nevin,Caruso Francesco,Derluyn Hannelore,Desarnaud Julie,Lubelli Barbara,Espinosa Marzal Rosa Maria,Pel Leo,Rodriguez-Navarro Carlos,Scherer George W.,Shahidzadeh Noushine,Steiger Michael

Abstract

Salt crystallization is accepted to represent one of the major causes for the degradation of building and ornamental stone. As such, it has attracted the attention of researchers, who over the years have progressively unraveled most mechanisms involved in salt damage. Despite this, many questions subsist about how to quantitatively predict damage or its progression, and in particular how to relate performance on site to that in laboratory tests. In this context, a new RILEM TC has been started with the objective of defining laboratory tests that deliver more reliable predictions of field behavior. One deliverable of this TC, is to provide a theoretical insight into this question based on recent progress on the understanding of salt damage. This paper presents a summary of this work, highlighting key aspects relating to crystallization pressure, chemo-mechanics and transport. Implications are more specifically discussed in relation to existing accelerated tests in an attempt to better define the type of field exposure that they may best represent. A simple conceptual model for the development of salt damage is introduced. During an initial “induction” phase, transport of ions and accumulation of salt in the porous materials occurs without causing detectable damage until a critical point, termed “damage onset” is reached. Beyond this point, during the “propagation phase”, the material degrades increasingly. The implications of these two phases are discussed in relation to the selection of appropriate salt weathering tests and conservation interventions.

Publisher

Rilem Publications SARL

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3