The kinetic competition between transport and oxidation of ferrous ions governs precipitation of corrosion products in carbonated concrete

Author:

Stefanoni Matteo,Zhang Zhidong,Angst Ueli,Elsener Bernhard

Abstract

Corrosion products, originating from steel corrosion and precipitating in the concrete pore system, can lead to concrete cracking and to spalling of the concrete cover. Related premature structural repair causes high costs. Thus, reliable quantitative models are needed, which currently do not exist. Here, we present a new conceptual model to describe the fate of ferrous ions that are released at the steel surface during the corrosion process. The key novelty of our approach can be found in explicitly considering the kinetics of oxidation and transport of Fe2+ in the pore solution. These two processes constantly dilute the Fe2+ concentration and are in competition with the supply of Fe2+ from the anodic iron dissolution reaction. We use a numerical model to elucidate which of the described processes is the fastest. The results find good agreement with experimental data and reveal that under natural corrosion conditions, Fe2+ hardly reach the saturation level, which permits the diffusion of corrosion products up to millimeters away from the steel without necessarily leading to expansive stresses. Under accelerated corrosion conditions, however, precipitation is forced immediately at the steel surface. This fundamentally changes the cracking mechanism and questions the relevance of such tests and related models.

Publisher

Rilem Publications SARL

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3