Abstract
The quality control of digital fabrication with concrete has more stringent requirements than traditional casting. Firstly, since formwork is typically absent, or removed at an early stage in production, the material is exposed to external influences that can result in deformations, collapse, or deterioration. Therefore, the evolution of properties during the process has to be controlled. Secondly, the fabrication systems are typically more sensitive to dosing fluctuations, and the produced, optimized objects are more sensitive to defects, which requires the process variations to be controlled at a higher resolution. A framework is presented that categorizes quality control experiments into destructive and non-destructive, according to their systematic error, and according to the location of testing with respect to the process. This framework is applied to the fresh state mechanical performance of concrete and quality control strategies are derived from it. Lastly, research gaps are identified that are critical for the further development and adoption of these quality control strategies in digitally fabricated concrete.
Subject
General Engineering,General Materials Science,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献