Influence of component fineness on hydration and strength development in ternary slag-limestone cements

Author:

Adu-Amankwah Samuel,Bernal Lopez Susan A,Black Leon

Abstract

The quest for sustainable alternatives to Portland cement has led to the exploration of a range of materials or their combinations, often with the aim of exploiting synergies in reactions or particle packing to maximize performance. Simultaneous optimization of both presents a viable option to increase the efficiency of cementitious materials. The objective of this study was to evaluate the effect of varying the fineness of the constituents in ternary blends of CEM I – granulated ground blast furnace slag (GGBS) - limestone on hydration kinetics and strength development. Eight (8) ternary cement mixes were tested at 0.5 water/binder (w/b) ratio. Hydration was followed by isothermal conduction calorimetry and setting time. In addition, X-ray powder diffraction, thermogravimetric analysis and compressive strength development up to 180 days of curing were assessed. The efficiency associated with changing the fineness of each component was evaluated in terms of the net heat of reaction and compressive strength. The results show that fine CEM I is critical for hydration at early age, and this is reflected in the compressive strength accordingly. The benefits associated with finer GGBS and similarly limestone depend on the fineness of the other constituents in the blend. Optimization of these should consider the inter-dependencies in terms of kinetics and microstructure development.

Publisher

Rilem Publications SARL

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3