Application of experimental design methodology to optimize acetaminophen removal from aqueous environment by magnetic chitosan@multi-walled carbon nanotube composite: Isotherm, kinetic, and regeneration studies

Author:

Nabatian Ebrahim,Dolatabadi Maryam,Ahmadzadeh Saeid

Abstract

Acetaminophen is a widely used drug worldwide and is frequently detected in water and wastewater as a high-priority trace pollutant. This study investigated the applicability of the adsorption processes using a composite of magnetic chitosan and multi-walled carbon nanotubes (MCS@MWCNTs) as an adsorbent in the treatment of acetaminophen. The model was well fitted to the actual data, and the correlation coefficients of R2 and adjusted R2 were 0.9270 and 0.8885, respectively. The maximum ACT removal efficiency of 98.1% was achieved at ACT concentration of 45 mg L-1, pH of 6.5, MCS@MWCNTs dosage of 400 mg L-1, and the reaction time of 23 min. The result shows that BET specific surface area of 640 m2 g-1. The adsorption isotherms were well fitted with the Langmuir Model (R2 =0.9961), depicting the formation of monolayer adsorbate onto the surface of MCS@MWCNTs. The maximum monolayer adsorption capacity of 256.4 mg g-1 was observed for MCS@MWCNTs. The pseudo-second-order kinetic model well depicted the kinetics of ACT adsorption on MCS@MWCNTs (R2=0.9972). Desorption studies showed that the desorption process is favored at high pH under Alkaline conditions. The results demonstrate that the MCS@MWCNTs is an efficient, durable, and sustainable adsorbent in water purification treatment.

Publisher

SCI AND TECH UNIVERSAL INC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3