Identification of Friction/Vibration Interaction between Solids

Author:

Abdo J. A.,Al-Rawahi N.

Abstract

 Dry-friction forces have been shown to depend not only on the characteristics of the surface in contact but also on the dynamic interaction of the contacting bodies. A viscoelastic mathematical model that accounts for the interaction at micro-scale of rough surfaces is developed. The mathematical formulation relates the tribological events at microscopic and macroscopic scales vibration response of a "mass on moving belt". The viscoelastic properties are presented by combining loss modulus with Young's modulus to obtain a differential operator on the interference, reminiscent of the Kelvin-Voigt model. The analysis of the system establishes the relation between friction force and speed and supports observed behavior of many systems with friction. The derivations do not rely on a phenomenological account of friction, which requires a presumed friction coefficient. Instead the friction force is accounted for as a result of interaction of the rough surfaces. This has led to a set of nonlinear ordinary differential equations that directly relate the vibration of the system to the surface parameters. It is shown that, as a result of coupling of the macrosystem's dynamics and contact, there are combinations of parameters at micro- and macroscale that yield negative slope in friction force/sliding speed relation, a well known source of dynamic instability. 

Publisher

Sultan Qaboos University

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3