Analysis of EEG Characteristics of Drivers at the Entrance and Exit of an Undersea Tunnel and Research on Driving Safety

Author:

Pan Fuquan,Yang Yongzheng,Zhang Lixia,Yang Xiaoxia,Yang Jinshun,Liu Meijun

Abstract

To study the influence of illumination and longitudinal slope at the entrance and exit of an undersea tunnel on driver EEG characteristics, a real vehicle experiment was performed with the Jiaozhou Bay Undersea Tunnel. The experimental data of a driver’s real vehicle experiment were collected using an illuminance meter, EEG instrument, video recorder and other experimental equipment. The EEG power spectrum was classified according to frequency, the difference between the EEG power spectrum at the entrance and exit sections and other regions was analyzed, and the influence of the illumination and longitudinal slope of the undersea tunnel on the brain activity of drivers was studied. The region near the entrance and exit of the undersea tunnel was divided equidistantly, the changes in the EEG power of the driver during the process of entering and exiting the undersea tunnel were analyzed, and the changes in brain activity and different brain regions during the process were studied. Based on the EEG power, the model of illumination, longitudinal slope and their coupling effect was established. The traffic safety of the entrance and exit of the undersea tunnel was analyzed, and a high-risk driving region was found. The results show that the power spectrum of the entrance and exit sections of the undersea tunnel is obviously different from those of other sections. At 50 m behind the entrance point and 50 m in front of the exit point of the undersea tunnel, the power of the β wave changes rapidly and is at a high level. The consistency between the variation law of the β wave and the variation law of illumination is high. At the entrance and exit of the undersea tunnel, the active regions of the driver’s brain are concentrated in the frontal lobe and occipital lobe.

Funder

Natural Science Foundation of Shandong Province, China

Humanities and Social Sciences Research Planning Foundation of Chinese Ministry of Education

Key Research and Development Project of Shandong Province

Publisher

International Information and Engineering Technology Association

Subject

General Environmental Science,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3