Cost and Risk Prediction in Road Transportation of Hazmat by ANFIS Trained with PSO, FA, HBBO and ICA

Author:

Mourad Acouri,Youcef Zennir,Tolba Cherif

Abstract

This paper proposes adaptive neuro-fuzzy inference system (ANFIS) to predict the risk with its aggregated cost (CR) of an accident in road transportation of hazardous material, the aim is to provide a more accurate and reliable data for the safety of transportation. The determination risk index by the conventional methods such as Risk graphs and deterministic approaches may lead to imprecise values due to the uncertainties, in both parameters and models. The proposed technique is a hybrid schema, which combines the main advantageous of fuzzy logic (address uncertainties) and neural network (learn from a given data). In other hand our study seeks to tune the parameters of the proposed model by particle swarm optimization (PSO), firefly algorithm (FA), imperialist competitive algorithm (ICA) and human based-behavior optimization (HBBO) and hence optimize the performance of ANFIS. The simulation result of this work and the comparative analysis shows that ANFIS yield height performance and the ANFIS-PSO was the outstanding one in the training phase, while ANFIS-FA gives better results in the testing process.

Publisher

International Information and Engineering Technology Association

Subject

General Environmental Science,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban traffic flow management on large scale using an improved ACO for a road transportation system;International Journal of Intelligent Computing and Cybernetics;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3