Detection of TCP-Based DDoS Attacks with SVM Classification with Different Kernel Functions Using Common Uncorrelated Feature Subsets

Author:

Dasari Kishore Babu,Devarakonda Nagaraju

Abstract

Distributed Denial of Service (DDoS) is a server-side infrastructure type security attack that aims to prevent legitimate users from accessing server system resources. Huge financial losses, reputation damage and data theft are some of the serious circumstances of DDoS attacks. Available DDoS attack detection methods reduce the severity of the attack's consequences, but they require more data computation, which is more expensive. This research proposed two feature selection methods in order to reduce the data computation for TCP-based DDoS attack detection with Support Vector Machine (SVM) classification algorithm. The first feature selection proposal of this study is to use Pearson, Spearman, and Kendall correlation approaches to select the PSK common uncorrelated feature subset. Use these PSK common uncorrelated feature subsets with SVM classifier with different kernels on TCP-based DDoS attacks and evaluate the classification results. This research, performed operations on Syn flood, MSSQL, SSDP datasets have taken from the CIC-DDoS2019 evaluation dataset. Select TCP-based DDoS attacks common uncorrelated feature subset selected by applying intersection on Syn flood, MSSQL, and SSDP data sets PSK common uncorrelated feature subsets is the second feature selection proposal of this research. Use these TCP-based DDoS attacks common uncorrelated feature subsets with SVM classifier with different kernels on TCP-based DDoS attacks and evaluate the classification results. Results with these two proposed methods also compared in this study. Experiments have been performed with these two approaches on a customized TCP-based DDoS attack that's been developed with Syn flood, MSSQL, and SSDP data sets, and the results have been evaluated. Linear, rbf, poly, sigmoid kernels SVM kernels used in this research. Experiments conclude that SVM with rbf kernel produces better results on TCP-based DDoS attacks.

Publisher

International Information and Engineering Technology Association

Subject

General Environmental Science,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3