Deep Learning Based Recurrent Neural Networks to Enhance the Performance of Wind Energy Forecasting: A Review

Author:

Paramasivan Senthil Kumar

Abstract

In the modern era, deep learning is a powerful technique in the field of wind energy forecasting. The deep neural network effectively handles the seasonal variation and uncertainty characteristics of wind speed by proper structural design, objective function optimization, and feature learning. The present paper focuses on the critical analysis of wind energy forecasting using deep learning based Recurrent neural networks (RNN) models. It explores RNN and its variants, such as simple RNN, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN models. The recurrent neural network processes the input time series data sequentially and captures well the temporal dependencies exist in the successive input data. This review investigates the RNN models of wind energy forecasting, the data sources utilized, and the performance achieved in terms of the error measures. The overall review shows that the deep learning based RNN improves the performance of wind energy forecasting compared to the conventional techniques.

Publisher

International Information and Engineering Technology Association

Subject

Artificial Intelligence,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing RNNs for EMG Signal Classification: A Novel Strategy Using Grey Wolf Optimization;Bioengineering;2024-01-13

2. Prediction of air quality pollutants using artificial intelligence techniques: A review;AIP Conference Proceedings;2024

3. Comparative Analysis on Solar Panel Defect Detection Using Deep Learning Approaches;2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI);2023-12-21

4. Wind energy forecasting based on integration of CNN and Bidirectional RNN;2023 International Conference for Technological Engineering and its Applications in Sustainable Development (ICTEASD);2023-11-14

5. An improved temporal convolutional network with attention mechanism for photovoltaic generation forecasting;Engineering Applications of Artificial Intelligence;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3