Boundary Layer Analysis Adjacent to Moving Heated Plate Inside Electrically Conducting Fluid with Heat Source/Sink

Author:

Rashed Ahmed S.,Nasr Ehsan H.,Kassem Magda M.

Abstract

Newtonian steady state flow of fluids with electrical conduction properties was examined adjacent to a moving heated vertical plate subjected to a magnetic field and a heat source/sink. The impact of magnetic parameter, Prandtl number, permeability coefficient, heat source/sink volumetric rate and temperature difference between heated plate and ambient temperature. A reduced system of ODEs was created via group similarity method. The solution led to some important results. Increasing permeability coefficient of the plate material resulted in a significant increase in flow velocity and a slight increase in heat flux but the magnitude of shear stress and temperature distribution decreased. Moreover, increasing the magnetic parameter, M, led to a significant decrease in velocity and a decrease in heat flux, whereas shear stress and temperature distribution increased. Furthermore, increasing Prandtl number, Pr, reduced the velocity significantly and the heat flux slightly. On the other hand, the magnitude of shear stress and temperature distribution increased. In case of using heat source, the increase in its energy rate decreased the heat flux with no significant effect on shear stress. Finally, the increment of temperature difference led to noticeable increase in velocity and a slight increase in heat flux, whereas the shear stress decreased.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3