A Systematic Literature Review on Recommender Systems for MOOCs

Author:

Najmani Kawtar,Benlahmar El Habib,Sael Nawal,Zellou Ahmed

Abstract

In recent years, MOOCs (Massive Open Online Courses) have become popular and the online learning resources are increasing, they are an offered courses by schools and universities, which are accessible to everyone and free of charge on the internet, they offer the possibility to teach a very group of students, in the same course, at the same time, even if they are not in the same location. There are many MOOCs platforms with different characteristics, they contain a huge amount of data, so the learner does not know which course to take and can choose irrelevant MOOCs. Therefore, he will waste the time and also the motivation. Recommender systems give a solution to this problem, they suggest learning resources to learners according to their interests and needs, so learner will be satisfied because he finds an appropriate course. In this paper, we give a systematic literature review of MOOCs recommender systems, based on published papers in the past ten years, between 2012 and 2022. We have selected 123 papers from five databases, IEEE Xplore, Springer Link, Science Direct, Google Scholar and ACM Library. We have divided the data analysis in two parts, the quantitative analysis, and the qualitative analysis. In the quantitative analysis, we have studied first the evolution of papers by year and the distribution of papers on databases by type. Then, in the qualitative analysis, we have based principally on the distribution of papers by the existed areas in MOOCs. We have found that there are six main fields, course recommendation, peer recommender, MOOC provider, video recommendation, learning activities and OER, paid activities recommender system and other papers in various types. A high number of articles have been published in the field of courses, which confirms that this domain is very important and crucial for learners.

Publisher

International Information and Engineering Technology Association

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Sequential Recommendation System For MOOCs Based On Heterogeneous Information Networks;2024 International Conference on Multimedia Analysis and Pattern Recognition (MAPR);2024-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3