Author:
Omar Amri,Mohamed Fri,Mohammed Msaaf,Fouad Belmajdoub
Abstract
The elaboration and development of monitoring (diagnostic and prognostic) tools for industrial systems has been one of the main concerns of the researchers for many years, so that many researches and studies have been developed and proposed, especially concerning discrete event systems (DES), which occupy an important class of industrial systems. However, the use of modeling tools to ensure these operations become a complex and exhausting task, while the complexity of industrial systems has been increasing incessantly. Therefore, the development of more and more sophisticated techniques is required. In this context, the use of artificial neural networks (NN) seems interesting, because thanks to their automatics and intelligent algorithms, the NN could handle perfectly DES diagnosis and prognosis problems. For this purpose, in the following papers, we propose an intelligent approach based on feed-forward neural network, which will deal with fault diagnosis and prognosis in DES, so that the events generated by the DES, will be presented and analyzed by the neural network in real-time, in order to perform an online diagnosis and prognosis.
Funder
National Center for Scientific and Technical Research of Morocco
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献