An Efficient Signal Processing Model for Malicious Signal Identification and Energy Consumption Reduction for Improving Data Transmission Rate

Author:

Alapati Yaswanth Kumar,Ravichandran Suban

Abstract

One of the fields which needs the most security is Ad hoc Network (ANET). The term ANET guarantees that there is no central authority so as to administer the signals. Security is a basic issue while using ANET for establishing communication. A ANET is an assortment of remote signals that can progressively be set up at anyplace and whenever without utilizing any prior system framework. Because of its volatile nature, it has mobility issues to improve the arrangement of the system. One of the difficulties is to recognize the malicious signals in the system. Because of malicious signals, data loss or high energy consumption will occur which reduce the overall performance of the ANET. There are a few circumstances when at least one signal in the system become malevolent and will destroy the limit of the system. The point of this work is to recognize the malignant signals quickly to avoid loss of data. The conventional strategy for firewall and encryption isn't adequate to secure the system. In this way a malicious signal identification framework must be added to the ad hoc network. A signal needs to be secured when utilizing the resources and to provide secure communication. The ad hoc networks have several issues like, congestion, overload, data loss and energy consumption. In the proposed work a framework for Rapid Malicious Signal Detection with Energy Consumption Reduction (RMSDwECR) Method is proposed. The proposed method is compared with the traditional methods in terms of load in the network, data loss ratio, signal transmission rate, energy consumption levels, malicious signal identification time and throughput levels. The proposed method exhibits better performance than the traditional methods.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3