Signed Convex Combination of Fast Convergence Algorithm to Generalized Sidelobe Canceller Beamformer for Multi-Channel Speech Enhancement

Author:

S Siva Priyanka,T Kishore Kumar

Abstract

In speech communication applications such as teleconferences, mobile phones, etc., the real-time noises degrade the desired speech quality and intelligibility. For these applications, in the case of multichannel speech enhancement, the adaptive beamforming algorithms play a major role compared to fixed beamforming algorithms. Among the adaptive beamformers, Generalized Sidelobe Canceller (GSC) beamforming with Least Mean Square (LMS) Algorithm has the least complexity but provides poor noise reduction whereas GSC beamforming with Combined LMS (CLMS) algorithm has better noise reduction performance but with high computational complexity. In order to achieve a tradeoff between noise reduction and computational complexity in real-time noisy conditions, a Signed Convex Combination of Fast Convergence (SCCFC) algorithm based GSC beamforming for multi-channel speech enhancement is proposed. This proposed SCCFC algorithm is implemented using a signed convex combination of two Fast Convergence Normalized Least Mean Square (FCNLMS) adaptive filters with different step-sizes. This improves the overall performance of the GSC beamformer in real-time noisy conditions as well as reduces the computation complexity when compared to the existing GSC algorithms. The performance of the proposed multi-channel speech enhancement system is evaluated using the standard speech processing performance metrics. The simulation results demonstrate the superiority of the proposed GSC-SCCFC beamformer over the traditional methods.

Funder

Science and Engineering Research Board, New Delhi, India

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Variable Selected Coefficients Adaptive Sparse Algorithm for Acoustic System Identification;Traitement du Signal;2024-06-26

2. Enhanced Noise Cancellation: A Variable Step Size Normalized Least Mean Square Approach;Traitement du Signal;2024-04-30

3. High performance FIR Architecture for EOG Signal Noise Supression;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

4. Credit Card Fraud Detection with Auto Encoders and Artificial Neural Networks;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

5. IoT Based Water Quality Monitoring for Smart Aquaculture;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3