An Approach of Detecting the Age of a Human by Extracting the Face Parts and Applying the Hierarchical Methods

Author:

Kathi Mohan Goud,Shaik Jakeer Hussain

Abstract

One of the key challenges that the computer vision is facing is the age prediction. A well efficient CNN is selected for age prediction by performing various CNN operations by taking the categories as age 40 and above age 40. The selected CNN method obtained a training accuracy of 100% at more than 100 epochs. Hence, 100 epochs is considered for training. At this, the validation accuracy achieved is 84.9%. Three kinds of age phases with an age gap of 20,10 and 5 are used to predict the age. The normal method results in very less accuracy. Hence a hierarchical method is formulated. Under the hierarchical method, CNN is trained to estimate the age gaps in decreasing order. Hence not a single classifier, a group of classifiers are used for testing the image. From traditional method to hierarchical method, the 20 age gap accuracy increased from 27% to above 60%, ten age gap increased from 12% to above 35%, and five age gap increased from 5.5% to above 21%. To improve further, the features of the face parts are derived and combined which improves the efficiency compared to normal method, but not good accuracy as Hierarchical method. The combination of hierarchical method along with the face feature extraction method results in a considerable improvement in accuracy.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3