Author:
Khan Sibghatullah I.,Kumar Ganjikunta Ganesh,Naishadkumar Pandya Vyomal,Rao Sarvade Pedda Subba
Abstract
Diagnosing chronic obstructive pulmonary disease (COPD) from lung sounds is time consuming, onerous, and subjective to the expertise of pulmonologists. The preliminary diagnosis of COPD is often based on adventitious lung sounds (ALS). This paper proposes to objectively analyze the lung sound signals associated with COPD. Specifically, empirical mode decomposition (EMD), a data adaptive signal decomposition technique suitable for analyzing non-stationary signals, was adopted to decompose non-stationary lung sound signals. The use of EMD on lung sound signal results in intrinsic mode functions (IMFs), which are symmetric and band limited. The analytic IMFs were then computed through the Hilbert transform, which reveals the instantaneous frequency content of each IMF. The Hilbert transformed signal is analytic, and has a complex representation containing real and imaginary parts. Next, the central tendency measure (CTM) was introduced to quantify the circular shape of the analytical IMF plot. The result was taken as a useful feature to distinguish normal lung sound signal with ALS. Simulation results show that the CTM of analytic IMFs has a strong ability to distinguish between normal lung sound signals and ALS.
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献