Author:
Zhu Tanbo,Wang Die,Li Yuhua,Dong Wenjie
Abstract
In real training, the training conditions are often undesirable, and the use of equipment is severely limited. These problems can be solved by virtual practical training, which breaks the limit of space, lowers the training cost, while ensuring the training quality. However, the existing methods work poorly in image reconstruction, because they fail to consider the fact that the environmental perception of actual scene is strongly regular by nature. Therefore, this paper investigates the three-dimensional (3D) image reconstruction for virtual talent training scene. Specifically, a fusion network model was deigned, and the deep-seated correlation between target detection and semantic segmentation was discussed for images shot in two-dimensional (2D) scenes, in order to enhance the extraction effect of image features. Next, the vertical and horizontal parallaxes of the scene were solved, and the depth-based virtual talent training scene was reconstructed three dimensionally, based on the continuity of scene depth. Finally, the proposed algorithm was proved effective through experiments.
Funder
Science and Technology Project of State Grid Shandong Electric Power Company
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献