Author:
Satla Shivaprasad,Manchala Sadanandam
Abstract
Dialect Identification is the process of identifies the dialects of particular standard language. The Telugu Language is one of the historical and important languages. Like any other language Telugu also contains mainly three dialects Telangana, Costa Andhra and Rayalaseema. The research work in dialect identification is very less compare to Language identification because of dearth of database. In any dialects identification system, the database and feature engineering play vital roles because of most the words are similar in pronunciation and also most of the researchers apply statistical approaches like Hidden Markov Model (HMM), Gaussian Mixture Model (GMM), etc. to work on speech processing applications. But in today's world, neural networks play a vital role in all application domains and produce good results. One of the types of the neural networks is Deep Neural Networks (DNN) and it is used to achieve the state of the art performance in several fields such as speech recognition, speaker identification. In this, the Deep Neural Network (DNN) based model Multilayer Perceptron is used to identify the regional dialects of the Telugu Language using enhanced Mel Frequency Cepstral Coefficients (MFCC) features. To do this, created a database of the Telugu dialects with the duration of 5h and 45m collected from different speakers in different environments. The results produced by DNN model compared with HMM and GMM model and it is observed that the DNN model provides good performance.
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献