Sound Visualization and Convolutional Neural Network in Fault Diagnosis of Electric Motorbike
Author:
Wu Jian-Da,Hsieh Che-Yuan,Luo Wen-Jun
Abstract
This study proposed convolutional neural network (CNN) training for different figure recognition to diagnose electric motorbike faults. Traditional motorbike maintenance is usually carried out by technicians to find the problem step by step. Many resources are wasted and time consumed in diagnosing maintenance problems. Due to rising environmental protection awareness, motorbike power systems gradually transformed from combustion engines into the electric motor. The sound amplitude generated by the combustion engine is great and may cover other faulty sounds. The electric power system sound amplitude is greatly decreased, permitting various fault diagnosis to be performed by extracting the electric motor sound. With the development of computers and image processing, deep learning neural network for picture recognition technology becomes more feasible. This study presents the motor system sound visualization for fault diagnosis. First obtain the sound signals of the motor in the five different states of the operation in the laboratory and the road test, and draw the time domain graph, frequency domain graph and spectrogram graph to be used as the test database. The results graphs of various states were trained through a CNN. The signal states were then classified to achieve fault diagnosis. Experiments and identification results show that the spectrogram and CNN method can identify motorbike faults most effectively compared to the time domain graph and the frequency domain graph.
Funder
National Science Council of Taiwan, Republic of China
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering