Sound Visualization and Convolutional Neural Network in Fault Diagnosis of Electric Motorbike

Author:

Wu Jian-Da,Hsieh Che-Yuan,Luo Wen-Jun

Abstract

This study proposed convolutional neural network (CNN) training for different figure recognition to diagnose electric motorbike faults. Traditional motorbike maintenance is usually carried out by technicians to find the problem step by step. Many resources are wasted and time consumed in diagnosing maintenance problems. Due to rising environmental protection awareness, motorbike power systems gradually transformed from combustion engines into the electric motor. The sound amplitude generated by the combustion engine is great and may cover other faulty sounds. The electric power system sound amplitude is greatly decreased, permitting various fault diagnosis to be performed by extracting the electric motor sound. With the development of computers and image processing, deep learning neural network for picture recognition technology becomes more feasible. This study presents the motor system sound visualization for fault diagnosis. First obtain the sound signals of the motor in the five different states of the operation in the laboratory and the road test, and draw the time domain graph, frequency domain graph and spectrogram graph to be used as the test database. The results graphs of various states were trained through a CNN. The signal states were then classified to achieve fault diagnosis. Experiments and identification results show that the spectrogram and CNN method can identify motorbike faults most effectively compared to the time domain graph and the frequency domain graph.

Funder

National Science Council of Taiwan, Republic of China

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3