Slow Feature Extraction Algorithm Based on Visual Selection Consistency Continuity and Its Application
Author:
Yang Hong,Zhao Yanming,Su Guoan,Liu Xiuyun,Jin Songwen,Fan Haoyang,Shang Yuhui
Abstract
The conventional slow feature analysis (SFA) algorithm has no support of computational theory of vision for primates, nor does it have the ability to learn the global features with visual selection consistency continuity. And what is more, the algorithm is highly complex. Based on this, Slow Feature Extraction Algorithm Based on Visual selection consistency continuity and Its Application was proposed. Inspired by the visual selection consistency continuity theory for primates, this paper replaced the principal component analysis (PCA) method of the conventional SFA algorithm with the myTICA method, extracted the Gabor basis functions of natural images, initialized the basis function family; it used the feature basis expansion algorithm based on visual selection consistency continuity (the VSCC_FBEA algorithm) to replace the polynomial expansion method in the original SFA algorithm to generates the Gabor basis functions of features with long and short-term visual selectivity in the family of basis functions, which solved the drawbacks of the polynomial prediction algorithm; it also designed the Lipschitz consistency constraint, and proposed the Lipschitz-Orthogonal-Pruning-Method (LOPM algorithm) to optimize the basis function family into an over-complete family of basis functions. In addition, this paper used the feature expression method based on visual invariance theory (visual invariance theory -FEM) to establish the set of features of natural images with visual selection consistency continuity. Subsequently, it adopted three error evaluation methods and mySFA classification method to evaluate the proposed algorithm. According to the experimental results, the proposed algorithm showed good prediction performance with respect to the LSVRC2012 data set; compared with the SFA, GSFA, TICA, myICA and mySFA algorithms, the proposed algorithm is correct and feasible; when the classification threshold of the algorithm was set at 8.0, the recognition rate of the proposed algorithm reached 99.66%, and neither of the false recognition rate and the false rejection rate was higher than 0.33%. The proposed algorithm has good performance in prediction and classification, and also shows good anti-noise capacity under limited noise conditions.
Funder
Key R&D Projects in Hebei Province of China
Social Science foundation of Hebei Province of China
Science and Technology Planning project of Hebei Province of China
National Science and Technology Infrastructure Program
Key Research and Development Program of Hebei province of China
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献