Slow Feature Extraction Algorithm Based on Visual Selection Consistency Continuity and Its Application

Author:

Yang Hong,Zhao Yanming,Su Guoan,Liu Xiuyun,Jin Songwen,Fan Haoyang,Shang Yuhui

Abstract

The conventional slow feature analysis (SFA) algorithm has no support of computational theory of vision for primates, nor does it have the ability to learn the global features with visual selection consistency continuity. And what is more, the algorithm is highly complex. Based on this, Slow Feature Extraction Algorithm Based on Visual selection consistency continuity and Its Application was proposed. Inspired by the visual selection consistency continuity theory for primates, this paper replaced the principal component analysis (PCA) method of the conventional SFA algorithm with the myTICA method, extracted the Gabor basis functions of natural images, initialized the basis function family; it used the feature basis expansion algorithm based on visual selection consistency continuity (the VSCC_FBEA algorithm) to replace the polynomial expansion method in the original SFA algorithm to generates the Gabor basis functions of features with long and short-term visual selectivity in the family of basis functions, which solved the drawbacks of the polynomial prediction algorithm; it also designed the Lipschitz consistency constraint, and proposed the Lipschitz-Orthogonal-Pruning-Method (LOPM algorithm) to optimize the basis function family into an over-complete family of basis functions. In addition, this paper used the feature expression method based on visual invariance theory (visual invariance theory -FEM) to establish the set of features of natural images with visual selection consistency continuity. Subsequently, it adopted three error evaluation methods and mySFA classification method to evaluate the proposed algorithm. According to the experimental results, the proposed algorithm showed good prediction performance with respect to the LSVRC2012 data set; compared with the SFA, GSFA, TICA, myICA and mySFA algorithms, the proposed algorithm is correct and feasible; when the classification threshold of the algorithm was set at 8.0, the recognition rate of the proposed algorithm reached 99.66%, and neither of the false recognition rate and the false rejection rate was higher than 0.33%. The proposed algorithm has good performance in prediction and classification, and also shows good anti-noise capacity under limited noise conditions.

Funder

Key R&D Projects in Hebei Province of China

Social Science foundation of Hebei Province of China

Science and Technology Planning project of Hebei Province of China

National Science and Technology Infrastructure Program

Key Research and Development Program of Hebei province of China

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3