Double Thresholding with Sine Entropy for Thermal Image Segmentation

Author:

Manda Manikanta Prahlad,Hyun Daijoon

Abstract

Traditional thresholding methods are often used for image segmentation of real images. However, due to distinct characteristics of infrared thermal images, it is difficult to ensure an optimal image segmentation using the traditional thresholding algorithms, and therefore, sometimes this can lead to over-segmentation, missing object information, and/or spurious responses in the output. To overcome these issues, we propose a new thresholding technique that makes use of the sine entropy-based criterion. Moreover, we build a double thresholding technique that makes use of two thresholds to get the final image thresholding result. Besides, we introduce the sine entropy concept as a supplement of the Shannon entropy in creating threshold-dependent criterion derived from the grayscale histogram. We found that the sine entropy is more robust in interpreting the strength of the long-range correlation in the gray levels compared to the Shannon entropy. We have experimented with our method on several infrared thermal images collected from standard image databases to describe the performance. On comparing with the state-of-art methods, the qualitative results from the experiments show that the proposed method achieves the best performance with an average sensitivity of 0.98 and an average misclassification error of 0.01, and second-best performance with an average sensitivity of 0.99 and an average specificity of 0.93.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3