A Logarithmic Function-Based Novel Representation Algorithm for Image Classification
Author:
Zhang Haiyue,Xu Daoyun,Qin Yongbin
Abstract
Salient feature extraction is an important task in image classification and recognition. Although classification techniques focus on the bright part of an image, many pixels of the image are of similar saliency. To address the issue, this paper proposes the logarithmic function-based novel representation algorithm (LFNR) to apply a novel representation for each image. The original and novel representations were fused to improve the classification accuracy. Experimental results show that, thanks to the simultaneous use of original and novel representations, the test samples could be better classified. The classification algorithms coupled with the LFNR all witnessed lower error rates than the original algorithms. In particular, the collaboration representation-based classification coupled with the LFNR significantly outperformed the other sparse representation algorithms, such as homotopy, primal augmented Lagrangian method (PALM), and sparse reconstruction by separable approximation algorithm (SpaRSA). The no-parameter property of the LFNR is also noteworthy.
Funder
National Natural Science Foundation of China
Major Applied Basic Research Program of Guizhou Province, China
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献